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Abstract

This second paper of a two-part series is devoted to flexural stresses and deformations in a laminated anisotropic
cylinder of perfectly bonded materials possessing the most general form of cylindrical anisotropy. The loading con-
ditions include pure bending, flexure by a transverse force, and applied surface tractions that lead to resultant transverse
loads and bending moments of uniform or linear variation along the axis. These loading conditions cause strain and
stress fields that are uniform, linear and quadratically varying along the axis. The solutions herein are based on the
relaxed formulation of the Saint-Venant’s and Almansi-Michell problems where conditions on the ends of the cylinder
are satisfied on an integral basis rather than on a point-wise basis. Differences in the stress distributions between these
integral conditions with any point-wise specification are self-equilibrated states that decay with distance into the in-
terior, i.e., Saint-Venant’s principle. Means to account for such effects are discussed. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

In the previous paper, Huang and Dong (2001) considered the analysis of axisymmetrical stresses
and deformations in a laminated circular cylinder of perfectly bonded layers with the most general form
of cylindrical anisotropy. The formulation was based on linear three-dimensional elasticity and semi-
analytical finite elements using an analytical form for the axial dependence. Solutions according to a relaxed
formulation were found using integral end conditions as opposed to their point-wise specification. Herein,
an analogous analysis is given for flexural stresses and deformations of the same laminated anisotropic
cylinder, where the loading condition is cast in a power series of the axial coordinate z. The first three load
terms of this series are addressed herein and they are associated with de Saint-Venant (1856a,b) bending
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and flexure and the Almansi (1901a,b) and Michell (1901) problems. They relate to flexural behavior
characterized by uniform, linearly varying and quadratically varying strains and stresses along the axis of
the cylinder. A uniform state occurs for pure bending. Linearly varying stress states result from flexure by a
transverse force on the end of the cylinder as well as from uniform axial longitudinal shear traction of
sinusoidal circumferential variation to yield a resultant bending moment per unit length. Quadratically
varying stress states are due to uniformly applied normal tractions and linearly varying longitudinal surface
shear traction. Such loads possess resultant transverse load and bending moment gradients. From the
discussion of these load cases, the solution procedure for the higher load terms will become clear. These
solutions based on integral end conditions differ with those by a point-wise specification only in their
distributions. The differences are self-equilibrated stress states which decay into the interior according to
Saint-Venant’s principle. Means for quantifying such differences are discussed.

The state-of-the-art survey in the previous paper revealed that the body of work on anisotropic cylinders
was devoted almost entirely to axisymmetric deformations. The literature on flexural deformations by
comparison showed a paucity of contributions. Lekhnitskii (1981) presented solutions for pure bending of a
homogeneous cylindrically orthotropic cylinder and for flexure of a homogeneous cylindrically monotropic
cylinder with the cross-sectional plane as an elastic symmetry plane. He remarked that the solution pro-
cedure for a fully anisotropic cylinder is relatively straight forward, but the formulas for stresses would be
extremely complicated. The case of axial force, torsion and bending of a composite cylinder was considered
by Kollar et al. (1992). Their analysis included applied surface tractions, but they restricted them to be
uniform along the axis of the cylinder and free of a resultant axial force. Beyond these and to the best of the
authors’ knowledge, no other publications on this specific topic are available.

2. Equations for flexural deformations

We are concerned with a cylinder of length L that is composed of any number of bonded layers of
materials with the most general form of cylindrical anisotropy. Set the origin of the cylindrical coordinate
system (r,0,z) at the center of the cross-section at the free or tip end and let z run positively toward the
fixed end as shown in Fig. 1a. The governing equation for this cylinder is

KU+ KU,y +K3U,. —K4U,p9 —KsU,p. —KgsU,.. = F, (1)

where U(6,z) and F(6,z) are the assembled (3N x 1) displacement and load arrays of the N nodes in the
finite element model and K;’s are system stiffness matrices. Details on the formulation of Eq. (1) can be
found in Zhuang et al. (1999).

For flexural deformations, displacement vector U(6,z) and its counterpart u(6,z) on the element level
consist of two sinusoidal components.

U0 = U@ UE S5 b a0 =] Gy b @
where U(z), Us(z) and u.(z), us(z), contain the three nodal displacement components.
U,(z) Usl(2) ue-(z)  ug(z)
[Ue(2), Us(@)] = | Ueo(2) Uan(2) |, [ue(2),us(2)] = | ueo(z)  w0(2) |- 3)
Us(z) Us(2) Ue(2)  us(2)

Similarly, the load vector F(0,z) for applied tractions on the inner and outer surfaces of the cylinder can be
written in terms of their sinusoidal components.
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Fig. 1. (a) Circular cylinder under uniform and linearly varying longitudinal surface shears. (b) Circular cylinder under various normal

and circumferential shear tractions.
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Although all three surface traction components may be included in F, and F;, only the longitudinal surface
shear tractions are represented in our solution scheme. These tractions have resultant bending moments
when they are integrated over the surfaces where the tractions are applied. Normal and circumferential
surface shear tractions leading to resultant transverse loads are accounted for directly in the displacements.
Thus, F. and F; have the following forms.

0 0
[FC(Z)’Fs(Z)]Z{ 0 0 } (5)
Fe(z)  Fel2)

Substitution of U and F from Egs. (2) and (4) into Eq. (1) leads to an equation with two sinusoidal
components, each component of which must vanish identically. These two equations which may be recast in
a single matrix equation of the following form

K, + K, K, U, n K; —Ks U, _ K¢ 0 U.| |JF (6)
-K; K +K4| | U Ks; K; Us. 0 K¢||Us..| K[
Recall that K, K4, K5 and K¢ are symmetric, while K, and K; are antisymmetric so that the first and third

matrices in Eq. (6) are symmetric and the middle one antisymmetric. Substitution of u into the strain-
displacement equations gives

cos 0
€(0.5) = fe2h 1] g | )
with
€. (Z) = b,u; + bou, + bzuC,Z7 €s (Z) = b,u; — bou. + bz“s,zv (8)

where strain-transformation matrices b;’s may be found in Zhuang et al. (1999). By means of the linear
anisotropic constitutive equation, ¢ = Ce, the sinusoidal stress components are

6.(z) = C[b,u. + byus + bu._], 65(z) = C[b,u; — bou, + b.u, .| 9)
The solution procedure rests on expressing F.(z) and Fy(z) in a power series of z.
FC(Z) _ 0 Fcl FC2 2 Fc3 . n Fcn
{Fs(z)}_{0}+{Fsl}+Z{F52}+Z | Q8 * T F, . (10)
The response U is taken in a comparable series as
U.(2) Ueo(2) } {Ucl(z) } {Ucz(z) } {UC,,(Z) }
_ . . 11
i) St ool R it B i) RERER o )

Substitution of Egs. (10) and (11) into Eq. (6) leads to an equation which can be grouped in a series
of terms, each of which constitutes a problem in itself. All problems except for the first one are of the

form
K, + K4 K, U n K; —K; Uk - _ Ks 0 Uz | s Fe (12)
-K; Ki + Ky | | Ug Ks K; U 0 K¢||Usz [ Fy |-
The first equation governing U and Uy, involve the homogeneous form of Eq. (12) since the first load term
in Eq. (10) is identically zero. The total response requires the sequential analysis of these problems as data
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from the lower order terms are needed to construct the solutions of the higher order terms. The first
problem relates to pure bending where the stress state is uniform along the cylinder’s axis. For pure
bending, there are no applied surface tractions. The second set involving U, and Uy, pertains to flexure by
applied transverse forces on the tip end of the cylinder. The corresponding stress state is at most linear in z.
The sinusoidal load terms F.; and F;; are longitudinal shears that amount to resultant uniform moments
and such loads can be accommodated by a linear stress state. The next set, Uy, and Uy, leads to a stress
state that varies quadratically in the axial direction. The force components F.,, F, are tractions with lin-
early varying resultant bending moments. These loads are consistent with a quadratically varying stress
state. Higher displacement terms pertain to commensurately higher resultant loads and stress states.
Herein, the first three cases are considered and they are designated as Problems I-III.

End conditions and global equilibrium equations involve pairs of orthogonal moments, M,(z) and M, (z)
and transverse shears, 7,(z) and ¥;(z), where x and y are two orthogonal axes in the cross-sectional plane of
the cylinder. The moments at any station along the axis of the cylinder are obtained by integrating the axial
stress 0., and their respective moment arms over the cross-section, i.e.,

ro 2n
M, (z) = — / /A 0..ydd = —/ /0 Oent” cos? 0drdo,

To 2n (13)
M,(z) = — / / o.xdd = —/ / og.r? sin” 0drdo.
A i 0
The shear forces are obtained by integrating the shear stresses o, and o,y over the cross-section, i.e.,
Yo 2n
Vi(z) = / /(az,. cosf — osin0)d4 = / / (GercOS* 0 — 0 sin’ 0)rdrdo,
A ri 0 (14)

Fo 2n
Vi(z) = — / /(az,. sinf + o,9cosf)d4d = — / / (Osr sin? 0 + 6. cos’ 6)rdrdo.
A r 0

3. Rigid body displacement

Four rigid body motions, two lateral translations (uo,v9) and two rotations (w;, ;) about two or-
thogonal axes in the cross-sectional plane, satisfy the homogeneous form of Eq. (6) identically and their
counterparts on the element level yield zero strains when substituted in Eq. (7). These identities are used in
the solution procedure. Their sinusoidal components have the form

(o =n{ S f ool ol R - (R o { - {S) 09

where Ry, R, and Rs are given by

| 0 0
R =<0 3, R,=<13, Ri=<0 5. (16)
0 0 r

The arrays I and r in Eq. (16) are of size (N x 1) containing N unit entries and N radial coordinates of the
finite element model, respectively. Substituting the four rigid body displacements (15) into Eq. (11) leads to
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[K; + K4 K, '{Rl }_0 {K1+K4 K, }{Rz}_o
L Ky K +Ks| [ R, ’ -K; K, +K; ] | R ’
[K; + K K 710 K; —-K R
S R
| K K; + K| [ Rs Ks; K; R,
[K; + K4 K, 7(Rs K; —K; R\
| K, K +Ki|/l o0 Ks K; ||-R,J
and the strain-transformation equations are

[br,bg]{ _’;2} =0, [b,.,bg]{:?} =0, [bg,bz]{;j } =0, [b.b. ]{ o } = 0. (18)

4. Problem I — pure bending

Pure bending of a cylinder is characterized by strain and stress fields that are uniform along the axis of
the cylinder. The sinusoidal components Uy and Uy, satisfy the governing equation

K, + K4 K, U i Ki —Ks|[Uq:| [Ks 0 Uz _ 0 (19)
-K, K, +K4 Uy Ks K; U2 0 K, Uz 0f"
The most general displacement forms of Uy and Uy for pure bending are

mm@m[ +%Mﬂ+%%¢>

z?
ug(r,z) = aaW g, (r) + ars [ 5 Vs (r) |,

2
002) = b 1) + s 5+ dﬁ}, (200
vso(7,2) = an [ 5+ '/&m(”)} + arss,(r),

weo(r,2) = analzr + Wepa, ()] + arsts, (1),
wyo(r,2) = @y, (r) + asslzr + Vs, (r)];

or in matrix notation as
UcO (Z ) _ Uc14 Ucl 5
{ USO (Z) - Us]4 * ars Us]S ’ (20b)
where
Ucrs 2 [ R n R;s n Yeu
= — — zZ s
Uy 2 | -R; 0 U
T YRR P TN,
=——= +z + .
U515 2 R1 R5 q’s]S
The z?/2 and zr terms in Eq. (20a) constitute the primal field that express the Bernoulli-Euler kinematic
hypothesis in cylindrical coordinates, and y; and ;; define the warpages of the cross-section. Note that

(1)
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Eqgs. (20a) and (20b) may be obtained by integrating the rigid body rotations in Eq. (15) once with respect
to z, a methodology due to Iesan (1987).
Substituting Egs. (20a) and (20b) into Eq. (19) gives

LA ([KitKe K R, Z([Ki+K K R
9 -K, K, +K;s | | Ry 9 —-K, K, +Ks | | —R;
o ([Ki+K K 01 [K —Ks]f R
14 K, K, +K;||Rs Ks K, -R,
caa([KiHK K TR [Ks K] [R,
= K, K +K;[]0 Ks K; || R
Ta K, + K, K, L 452 i K;Rs + K¢R,
" -K, K, + K, b 4901 KsRs — K¢R,
K, + K, K, Yas —Ks5Rs + KgR, .
+ais ({ -K, K, + KJ { Vs } + { K;Rs 4+ K¢R }) =0 (22)

Each term of Eq. (22) enclosed by parentheses must vanish. The terms multiplied by z> and z are satisfied by
the rigid body identities (17). The remaining terms provide means for determining the warpages.

K, + K, K, b _ K;Rs + K¢R; (23a)
K, K, + K, b 907 KsRs — K¢R» |’

K; + K4 K, Yos | _ _ ] —KsRs + KeR, (23b)
-K, K, + K, Vs Ks;Rs + KR, [°

These warpage functions are driven by stiffness matrix terms K3, Ks, and K¢ operating on the components
of the primal field. A comparison of this pair of equations reveals that

WCI4 = WslSy Ylsl4 = _TCIS' (24)

This equivalence of the warpages about two orthogonal axes is manifestation of material axial symmetry, as
the terms differ only by a ©t/2 rotation by the z-axis. Therefore, only one equation in the set of Egs. (23a)
and (23b) needs to be solved to establish the warpages. This pattern of identical solutions about the two
orthogonal axes is repeated is subsequent problems, so that only one series need to be solved.

The stiffness matrix in Eq. (23a) or Eq. (23b) is singular by two degrees of freedom due to two rigid body
displacements. These two motions must be suppressed in order for a unique inverse. Imposing this restraint
does not affect the relative displacements of deformation, as a rigid body displacement can always be
appended to meet the clamped end boundary conditions. The choice of these degrees of freedom relates to
the locations of the applied normal and circumferential surface tractions in subsequent problems.

Substituting the element level of displacement field (20a) and (20b) into the stress transformation
equations (9) yields the following sinusoidal components of the stress transformation equations.

0o = C[brl/’CM + b0'l’s[4 + bZr5]> 050 = C[brll’sM - b0l/’c14]’ (25)

where rigid body identities (18) were invoked. Observe that stress field (25) is independent of z, verifying the
pure bending state.

The coeflicients a;4 and a;s are found from the applied moments M, and M,. Substituting ¢.. from Eq.
(25) into Eq. (13) gives

[Mh o o 0 ][] 29
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with k44 as the flexural rigidity of the circular cross-section. The absence of the off-diagonal term 45 is due
to orthogonality of sin # and cos 6 with ¢, in the integrands of Eq. (13) and axial symmetry of the circular
cross-section. Solution of Eq. (26) gives

M, M,
ajpy = — . , aris = __y. (27)
Kra4 Kia4

5. Problem II — generalized flexure

Generalized flexure herein refers to strain and stress fields that are at most linear in the axial direction.
The governing equation for this case is

K, + K4 K, Ue 4 K; —K; Ui - _ Ks 0 Ucz | | Fa (28)

-K; K, + K4 | | Uy Ks; K; Ui,z 0 Ko¢||Unz ) |Falf
In generalized flexure, there are two loading conditions: (1) applied transverse shear forces P, and P, at
z=0, and (2) uniform axial longitudinal surface shear tractions (pi,peo) and (pui,pso) of sinusoidal

circumferential variations on the inner and outer surfaces, (7;,7,) as shown in Fig. 1b. These tractions are
contained in F.; and Fy; and they possess resultant moments per unit length (m,,m,) of

2n
m, = / [p0zcor(2> 7pCZiri2:| COSZ 0d0 =mn [pczorg B pCZiriz]’
0 (29)

2n
my, = ‘/0 [p()zsori - pszirﬂ Sin2 0d0 =mn [pSZor(z) - pSZiriz:I :

Assume that M, and M, at z = 0 are zero, as end tractions giving an end moment can be treated in Problem
1.

For generalized flexure, the most general form of the sinusoidal components of the displacement field in
matrix notation is

Ucl (Z) } { Uc]]4 } { Uc[4 } { Ucll4 } { UCHS } { Uc[5 } { UC”5 }
= +b + Pt +b + P (30
{ Usl (Z) s Us114 o UsI4 Usll4p aus UsHS s UsIS UsllSp ( )
where (U, U, Uys, Ugs) are components of Problem I. Deformation coefficients (ayq, ays, by, bys) are

new coefficients, (Ucyap, Usnap) and (Ucysp, Ugysp) are particular solutions for the applied longitudinal
surface shears, and (U4, Ugyra, Ugys, Ugys) are new components given by

{UCIM} :_2_3{ R, }+Z_2{R5}+z{ Tcl4}+{l1’cll4}’
Us[14 6 _RZ 2 0 Tsl4 ‘Il5114
{Ucns} z3{Rz}+zz{ 0 }+Z{Y’c15}+{'l’cus}
US”5 6 Rl 2 R5 Yls[5 TS]]S '
Warpages (Y, Ysra, Pors, Psrs) are those of Problem I, but (Veys, Y, Yenrs, Psus) are new. Eq. (31) may
be obtained by integrating Eq. (21) once with respect to z, a procedure due to Iesan (1987).

For clarity of discussion, consider first the flexure of the cylinder by a shear force applied at its tip end
without applied longitudinal surface tractions. Thus, the particular solutions in Eq. (30) are not involved.
Substituting this truncated form of displacement field (30) into homogeneous Eq. (28) gives a host of terms,
many of which are satisfied by the rigid body displacement identities and equations of Problem I. For

brevity sake, these expressions are not shown here. The new terms provide equations for determining the
new warpage functions. The set of equations for ¥ ;4 and ¥4 is

(31)
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K, +K,4 K, } |:Wcll4:| _ {K3 Vs — Ks¥Pgs — KeRs (32)

-K; Ky + Ky | | Ysus KsWs + K3¥4

There is an analogous set of equations for ¥Y.;s and ¥;s which is not shown. Its solution shows that
Vs = Yeuq and Yops = — Wy, a property due to material axial symmetry that was mentioned previously.

The sinusoidal components of the stress field from solution for the displacements and stress displacement
relation (8) are

61 = ayu[z6c + 601] — ays[z6 + 61| + bya6y — bysey, (33)
641 = ays(z64 + 61| + ays[z6 + 61) + bia6g + bys6c,

where (6, 05) were given by Eq. (25) and
oct = ClbY s + oWy + by, 051 = ClbYgp — boW s + by (34)
Integrating o,. of Eq. (33) according to Eq. (13) yields M, and M, as

Ored == 2]+ Lo, Dot - 2 ] {o} )

Observe that &y is antisymmetric.
Coefficients ay4 and ays are determined from global equilibrium that relates shear forces (P, P,) to the
rate of change of moments (M,,M,).

oM, oM,
——= ——X=p. 36
Oz » Oz ’ (36)
Invoking this condition by differentiating Eq. (35) furnishes a;4 and ays as
P, P,
angg = —y7 aps = . (37)
K144 K144

Substituting a;;4 and ays into Eq. (35) and invoking the zero moment initial condition at z = 0 give ;4 and
bys as

bis = ———ays, bys = %0114- (38)
K44 K44

For a homogeneous, isotropic cylinder, x5 is identically zero so that by, = bys = 0 and the only stress
components uniform in z are shears gy, and o,.. In contrast, there is a uniform axial stress o.. that ac-
companies the shear stresses in an anisotropic cylinder. The integral of this o, distribution over the cross-
section leads to a pure bending moment with a vectorial direction parallel to that of the shear force. Global
equilibrium is nevertheless maintained as this moment is negated by an equal but opposite pure bending
moment through the presence of k45 that relates the ay;’s to the by’s by Eq. (38). The b;;’s terms provide
for the equilibrating pure bending moment as they are connected to stresses a9 and a6 in Eq. (33), which
contain the essence of this moment. However, the superposition of these two o.. distributions leaves a self-
equilibrated stress state rather than a traction-free surface. The self-equilibrated stress state decays with
distance into the interior of the cylinder according to Saint-Venant’s Principle, and means for quantifying
the manner of this decay are mentioned in the concluding remarks. By the relaxed formulation, end
conditions in an anisotropic cylinder can only be achieved on an integral basis. A numerical example on the
flexure of an anisotropic cylinder will illustrate this phenomenon of self-equilibrated stresses from two pure
bending moments more clearly.

Now consider applied longitudinal surface shear tractions on the cylinder which are contained in load
vectors (Fe, Fy) in Eq. (28). They possess resultant uniform moments per unit length m, and m, given by
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Eq. (29). These resultant moments cause changes in M, and M,, so that the analogue to global equilibrium
equation (36) for this loading condition is

oM, _ oM, _
— 62 = My, —g = my (39)
with m, and m, in place of the transverse forces. Using particular solutions U, and Uy in Eq. (28) gives
K] + K4 KZ Uc114p — FCO (40)
7K2 K1 + K4 Usll4p FSO '

Similarly particular solutions Ugys, and Ugys, depend on a set of equations analogous to (40), which shows
that Ugysp, = Ueyap and Ugys, = —Uggp. Thus, manifestation of axial symmetry is again seen.
The sinusoidal components of the stress field of the particular solutions are
Ocpl = C [brucll4p + b9u5114p} ) Ospl = C[brusll4p - b9u0114pbigr] (41)

Integrating 6.9 and o,. of Eq. (41) over the cross-section according to formula (14) gives a shear resultant V,
that is equal in magnitude to moment per unit length m,, thus satisfying global equilibrium (39). However, a
transverse shear force ¥}, cannot exist for loading from longitudinal shear only. Negating this force requires
the superposition of an equal but opposite flexure force of the generalized flexure solution. Even though this
superposition of these transverse force gives a zero net, the net shear stresses do not vanish on a point-wise
basis but comprise a self-equilibrated set that decays into the interior according to Saint-Venant’s principle.

6. Problem III - linearly varying flexure

This problem is characterized by stress and strain fields that vary quadratically with z and is governed by

I(1 + K4 I(2 Uc2 + K3 _KS UcZ,z _ K() 0 Uc2Azz - FCZ (42)

-K, K +Ki|| U Ks K; Us. 0 K¢|| Ussz Fo |’
Three traction components of sinusoidal circumferential variation may occur on the inner and outer sur-
faces: (1) linearly varying longitudinal shears zp/ ; and zp._, (Fig. 1a), (2) normal pressures p; and py, (Fig.
1b), and (3) circumferential shears p.; and py, (Fig. 1b). The linearly varying longitudinal shears lack a

resultant axial force, but possess linearly varying moment resultants zm, and zm/, about both axes where
and m, are given by

2n
= [ (ot = pr?] cos? 040 = xpfr? — r?).
! @)

2n
m; = /0 [p;zo (2) _p;zlrlz] Sin2 Hde = n[p;zor(z) _p,sziriz] .

The resultants due to normal pressures p.; and ps., and circumferential shears p.y; and pg, are uniform
transverse loads p, and p, of magnitudes

2n
P = / [Fo [Poro €087 0 — pygo sin” 0] — 7;[pei c0s> 0 — pygi sin® 0] | dO
0
= T[[ro [pcro - psﬁo] —n [pcri - Ps@i]L (44)
2n
Py = / [Fo [Psro $in* 0 — pego €08 0] — 7 [pyys sin® 0 — peg; cos? 0]] dO
0

= TE[VO [psro _pc()o] —n @sri _pc()i]]-
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For Problem III, zero moments and transverse forces at z =0 are taken, i.e., M,(0) = M,(0) =0 and
P.(0) = P,(0) = 0. Also, uniform longitudinal shears are not considered. All of these loads can be treated by
superposing the results of Problems I and II.

The sinusoidal displacement components for Problem III have the form

Us (Z) } { Ui } { Ucna } { Ucsa } { UC]114p1 } { UC[114p2 }
= +b + 1 +
{ Usn(2) s Usiia ) Uga cir Ugs z Usiizapi Usiirap:
UCIIIS Ucl[S UCIS UCIIIS 1 UC1115 2
b P P 45
+ aH]S{ UsIIIS + s USIIS + s USIS tz UslllSpl + UsHlSpZ ’ ( )
where coefficients ayy’s, by;’s, and cpy’s are new. All displacement terms in Eq. (45) have been defined

previously except for the terms Ugy;’s and Ugy,’s and particular solutions (Ueyp,;’s and Ugyp,’s). The new
terms Ucpza, Usira, Ues, and Ugyys are given by

{UCIIM} z { R, } 2 {Rs } z { ‘l’cm} { Y’cm} { Yema }
== - += +z + ,
Us”l4 24 _RZ 6 O 2 Tsl‘l qlsll4 qlslll4
{UC,,,S} :_g{R2}+z_3{ 0 }+z_2{ Wc,5}+z{ vfc,,s}+{s"cms}
UsHI 5 24 R 1 5 R 5 2 q’s] 5 q’sH 5 TSIH 5
with ¥ ;;’s and Wg;;,’s as new warpage functions. Displacement field (46) can be obtained by integrating
Eq. (31) once with respect to z, i.e., lesan’s methodology (1987).
First, consider transverse loading by surface normal and shear tractions. The homogeneous form of Eq.
(42) applies and the particular solutions in Eq. (45) are not involved. Substituting the truncated form of Eq.
(45) into homogeneous equation (42) leads to a group of terms, with many of them satisfied by relations

established in Problems I and II. The new expression associated with coefficient a;;4 enables ¥ ;4 and ¥4
to be determined.

(46)

K + K4 K, Yoma | _ | KsWers — KsWons — KeWor 47)
-K; Ky + Ky | | Yo KsWes + KsWois — KeWoa |
A similar consideration of the expression associated with a;;s shows that Wg;s = Yeys and ¥oys = —WYaua.

The location of the normal and surface shear tractions depends on the two restraints chosen to render
the stiffness matrix of Eq. (47) non-singular (recall that this matrix is singular by two degrees of freedom).
For example, suppressing the radial and circumferential displacements on the outer surface yields warpages
Y.ns and Wy that define the stress distribution for externally applied tractions p., and ps,. Similarly,
inner surface restraints give warpages defining stress distributions for surface tractions p.,; and pg; on the
inner surface. A mixed combination of these displacements on inner and outer surfaces is also possible. This
usage of the restraints was seen in the previous paper on axisymmetrical deformations where the warpages
were said to have the roles of applied distributed loads and the suppressed degrees of freedom act as the
supports.

The sinusoidal stress components in this case are

2
O] _ i () O¢| () () O] O
e e o R b A o IR S b R Py R o,
Zz —0y) —0yg] —05 —0y) —05]
e o S ) S i IR g SR B |
—0y
+Cu15{ e }7 (48)

C

where the new terms are
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6 = Cb,Yus +bo¥ns + .Vl

(49)
6o = Cb.Yous — bo¥eins + b.¥Yps).

Integrating o.. from Eq. (49) over the cross-section according to Eq. (13) gives M, and M, as
{ M, } (Z2 [K144 0 } [ 0 K1145} [K11144 0 } ) { aja } ( [K144 0 ]
=—\|= +z + — |z
Mv 2 0 K4 —Ki145 0 0 K44 ajrs 0 Kra4
n { 0 K1145]) { b } _ {K144 0 ] {01114 } (50)
—Kir4s 0 bus 0 K44 Curs

Coecflicients a;;4 and ayys are determined from global equilibrium conditions that relate the second de-
rivatives of the moments M, and M, to their respective resultant transverse forces in the two coordinate
directions.

O’M, *M,
- aZZ :va - azzy:py7 (51)

where p, and p, are given by Eq. (43). Applying Eq. (51) to Eq. (50) gives ays and ays as

D J2
anis = —y7 anis = = (52)
Kra4 Kra4
The values of b4 and b;;s come from the derivatives of M, and M, vanishing at z = 0 since there are no tip
forces P, and P..

oM,
0z |z=0
Kiras K45
_ oMy =0 — b= ———ams, bus = —aun. (53)
% | K144 Kr44

Lastly, invoking zero moments M, and M, at z =0 in Eq. (50) gives c;u and cyys as

Cirs = — %bms _ D ana, Curs = @bHM _ B ans- (54)
Kia4 Kia4 Ki44 Kia4

In this solution, the stresses o, and oy, lead to resultant transverse shear forces and moments. These
resultants cannot occur and they are negated by equal but opposite resultants through the b;; and ¢;; terms
and the presence of k45 and x;44 in Eqgs. (53) and (54). These coefficients are associated with stresses that
supply uniform moment and force resultants of Problems I and II for self-equilibration. While this com-
bination satisfies equilibria on an integral basis, they do not leave a point-wise traction-free surface, but one
which is self-equilibrated that decays with distance into the interior of the cylinder according to Saint-
Venant’s principle.

Now consider the linearly varying longitudinal surface shear traction zp/; that is contained F., of Eq.
(42). The traction zp/_, in F;; of Eq. (42) may be omitted inasmuch as it causes a response identical to that of
zpl.; about the other axis. Using particular solution in Eq. (45) with subscript 4 in Eq. (42) gives the fol-
lowing two sets of equations that must be solved sequentially to establish the displacement field for lon-
gitudinal shear.

K, + K4 K, Ucrirapi _ F. (55)
—K2 Kl + K4 Us]114p1 0 ’

K + K4 K, Uz | _ | K3 —Ks | | Uctrapi (56)
-K;  Ki + Ky | | Usinapr Ks  Ks || Usp
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The stresses based on this displacement field have the form

{O’Cl } _ Z{ Ocpl } + { Ocp2 }, (57)
(] Opsl Ops2
where (6,1, 06p51) Was given by Eq. (41) and the new term has the form

6 =C [b)'u01114p2 + botgjpap + bz“c[]]4p1:|v

60 =C [brusﬂl4p2 — boucipap + bzuslll4pl}-

(58)

The set of particular solutions Ucyrap1 and Ugyupi and corresponding stress field a1 and o that account
for the linearly varying portion of the longitudinal surface shear also yields a transverse force and moment
resultants. These resultants must be negated by the superposition of pure and transverse shear force of
Problems I and II. Like the other case, equilibria is satisfied on an integral basis, leaving a point-wise self-
equilibrated state which decays into the interior.

7. Examples

Two thickness profiles are considered in our examples: (1) a homogeneous, isotropic cylinder with shear
modulus G, Poisson’s ratio v = 0.3, and (2) two-layer laminated +30° angle-ply cylinder with equal
thickness plies of mechanical properties

By, Gr_g4, G-

Er Er Er
This laminate profile is the same as that in the previous paper of Huang and Dong (2001), and the C;
properties may be found there. The mean radius/thickness ratio for the homogeneous, isotropic cylinder is
R/H =1, and two radius/thickness ratios, R/H = 1 and 10, for the angle-ply profile were used to show the
differences between thick-walled cylinder and shell behavior.

The K44, K745 and xc;44 values for these cylinders are summarized in Table 1 in terms of stiffness G or Er,
thickness H and the R/H ratios with superscripts to identify the type of applied surface traction. In all plots
of stress distributions, the stress components are normalized by o, that depends on the various loads as
follows: (1) bending moment My; oo = M,/H?>, (2) transverse shear force Py; 6y = Py/H?, (3) uniform normal
and shear tractions o;; 0y = g;, and (4) linearly varying tractions o7; o, = 6,H.

0.3, Vi = 03, Vir = 0.2. (59)

Table 1
Stiffness coefficients
Isotropic Two layer £30° Two layer £30°
R/H =1 R/H =1 R/H =10
K144 10.21 GH* 16.77 E;H* 16397 ErH*
K145 0.0 —28.41 ErH? —28022 ErH?
Kiia® 15.15 GH* —70.43 E-H® —3487755 EyH
K[]14b 2894 GH6 631 E‘]‘I{(J 72384848 ETH6
Kiia© 21.28 GH® —72.57 E-H® —3562853 E-HS
Kra® 22.81 GH® —51.66 ErH® —1820496 E;H®

#Normal pressure on outer surface.
®Shear traction on outer surface.
“Normal pressure on inner surface.
dShear traction on inner surface.
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8. Hollow homogeneous, isotropic cylinder

The stress distributions shown in Fig. 2a—d are, respectively, for the following loading conditions: (1)
pure bending and transverse shear, (2) transverse load by surface pressure and hoop shear, (3) uniform
longitudinal surface shear, and (4) linearly varying longitudinal shear. Some comments are offered for each
of these figures.

Fig. 2a: The pure bending stress is linear over the cross-section. In Timosheko and Goodier (1970,
p. 358), is a formula for the shear stress distribution in a solid isotropic cylinder due a transverse shear
force. Although not shown here, the present shear stress results are in excellent agreement with this for-
mula.

Fig. 2b: Four applied surface traction for transverse load cases are shown. In all cases, bending stress o,
with a moment resultant accompanies this loading condition, which is negated by a pure bending moment
through ¢4 and factor g4 /K44 of Eq. (54).

Fig. 2¢: For uniform longitudinal surface shears on the inner and outer surfaces, there are shear tractions
on the end cross-section with a transverse shear force. Addition of an opposite transverse shear force so-
lution cancels this force on an integral basis but leave a self-equilibrated stress state that decays into the
interior.

Fig. 2d: The linearly varying longitudinal shear load incurs a surface stress o¢,.. To negate this surface
traction, a transverse load problem is needed. Also, o.. occurs resulting in a bending moment on the cross-

(a)
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1 Transverse

Pure Bending Shear

-
v
a

1

-

M)

a
1

1.00

o. -

-~ 1.00

Normalized Radial Coordinate r/H
Normalized Radial Coordinate r/H
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comp.

%z Oz
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comp. comp.

0.75 - 0.75 -
j
!
/
7
7
0.50 T T 0.50 T T T
-0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2
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Fig. 2. (a) Normalized stresses for pure bending M, and transverse shear force P, in homogeneous, isotropic cylinder. (b) Normalized
stresses for various surface tractions leading to a transverse load in homogeneous, isotropic cylinder. (c) Normalized stress for uniform

longitudinal shears on outer and inner surfaces in homogeneous, isotropic cylinder. (d) Normalized stress for linearly varying lon-
gitudinal shears on outer and inner surfaces in homogeneous, isotropic cylinder.
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Fig. 2 (continued)

section so that a pure bending solution is needed. Again, equilibrium on an integral basis is satisfied, but a
self-equilibrated stress state remains. This loading condition on an isotropic cylinder appears to be so
deceivingly simple that the authors expected to find it in the literature; however, they were unable to do so.



6198

C.H. Huang, S.B. Dong | International Journal of Solids and Structures 38 (2001) 6183-6205

©

1.50 1.50
Uniform Uniform
Longitudinal Longitudinal
Shear Shear
Inside Surface Outside Surface
T 1.25 4 x1.25 1
= =
2 ] o
© @
[= [~
B S
o Q N
Q Q ]
o o !
= 1.00 1 ©1.00 [
il k] I
o] (o] i
o 29 :
[0) Q i
N N !
= T i
E 1 E i
2 0.75 2075 - Oz 'f oy
sine i cosine
comp. i comp
/
7
‘_i
0.50 T 0.50 A .
5 -0.4 -0.2 0.0 0.2
Dimensionless Stress ;i /o
(d)
1.50 1.50 1 T
. :
’ H
Linear :' Linear rr “_:'
Longitudinal ! Longitudinal ((::gﬁ;ne ‘ H
] p. ' H
Shear ! Shear H H
' ;
i : 1.25 N
T 1259 Restrainton ! " Restraint on :
; Inside Surface H ; Outside H
- ' P ' :
.g C,’ee*:'— _E Surface 4
° cosine . °
8 comp. S C
o ' o a H
T 1.00 ! < 1.00 R
S ‘ 5 cosine | ;
& Oz : g comp.
g cosine O i g ;
S comp. o g
= sine ! 5
E comp. ! £ Ozz Oro———41i
5 ! S 1 cosine sine
Z 0.75 ' z 075 comp. comp.
O} :
cosine :
comp. ‘.' !
' .
.
: y
0.50 by 0.50 e T
20 -15 10 -05 00

Dimensionless Stress ajj 14

0.5

Dimensionless Stress Gjj /G

Fig. 2 (continued)




C.H. Huang, S.B. Dong | International Journal of Solids and Structures 38 (2001) 6183-6205 6199

9. Two-layer *+30° angle-ply cylinder

Five load cases are shown in Fig. 3a—e. They are (1) pure bending, (2) transverse shear force, (3) external
pressure leading to a transverse load resultant, (4) external longitudinal shear leading to a uniform moment
resultant, and (5) linearly varying external longitudinal shear producing a resultant moment rate. Brief
comments are given for each case.

Fig. 3a: For both R/H ratios, a substantial oy, component from extension-shear coupling accompanies
the ¢.. component. For R/H = 10, anisotropy and laminate construction have little effect on the bending
stress distribution; it is nearly linear except for a very slight interface kink even though Cj; is the same for
both layers. For higher R/H values, this kink will be even less pronounced. All other stress components are
virtually zero. Thus, laminated shell and plate theory’s ability to predict the stress distributions accurately is
validated. But, for thick-walled cylinders such as R/H = 1, the bending stress o, is no longer linear over the
cross-section so that three-dimensional elasticity must be used. Other stress components are present, which
are more significant than that for R/H = 10.

Fig. 3b: A o, accompanies the shear stresses in the (o., g5 ) states, showing that the shear force induces
an axially uniform bending moment. This bending moment is negated by stresses associated with the by;’s
coefficients through ;45 as shown in Eq. (38). This cancellation leaves a self-equilibrated bending stress
distribution, whose distribution may be gleaned by comparing the ¢..’s in Fig. 3a and b. In contrast, no
such moment occurs in the homogeneous, isotropic cylinder as x5 = 0. A linearly varying moment must
accompany this transverse force according to global equilibrium whose gradient has a stress distribution for
that of pure bending, i.e., according to zo.y and zay.

Fig. 3c: Plots of stresses for uniform external normal pressure on the cylinder show that a uniform
bending moment and transverse shear force are induced by the anisotropy and laminate construction.
These resultants are automatically negated by the terms associated with the by;’s and ¢;;’s terms through
Kmas and ke in Egs. (53) and (54). The stress distributions for R/H = 10 illustrate that they can be
predicted by laminated shell theory with reasonable accuracy. This claim is not valid for thick-walled
cylinders as seen from the results for R/H = 1.

Fig. 3d: Integrating the stress distributions due to external longitudinal shear yields a resultant shear
force. To negate this force, a transverse force solution must be appended. This superposition leaves a self-
equilibrated state as seen by comparing Fig. 3d with b. While no plots were given for the surface shear on
the inner surface, it is remarked that they evince similar distributions as those of traction on the outer
surface.

Fig. 3e: Because the exterior surface was restrained for the case of a linearly varying external longitudinal
shear, a normal stress g, appears on the outer surface for load. This is the reversal of role that was
mentioned earlier. To eliminate this normal surface traction, a normal pressure load solution must be
appended. In addition to this stress component, o,., gg., and o., occur that lead to a bending moment and
transverse shear force. They must be annihilated by superposition of pure bending and transverse shear
solutions. The net result of combining all of these load cases is to produce a self-equilibrated stress state
that will decay into the interior according to Saint-Venant’s Principle.

10. Concluding remarks

A analysis procedure was presented for flexural deformations in laminated anisotropic circular cylinders
due to pure bending, transverse shear force, surface tractions with a lateral force resultant, and uniform and
linearly varying longitudinal surface shears. Examples for two type of thickness profiles were given to il-
lustrate the behavior. In the example of a two-layer angle-ply-ply laminated anisotropic cylinder, the stress
distributions were extraordinary complicated with considerable coupling between longitudinal and shear
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Fig. 3. (a) Normalized stress for pure bending M, in a two-layer £30° angle-ply cylinder. (b) Normalized stress for transverse shear
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deformations. Also, it was observed that in many of these analyses, the solution satisfied the end conditions
only on an integral basis rather than on a point-wise basis, leaving self-equilibrated tractions over the cross-
section. To render the end conditions free of traction, it is necessary to superpose an end effects analysis.

The end analysis, or the quantification of Saint-Venant’s principle, relies on eigendata from the following
algebraic eigenproblem

Ki +Kq K; Uco _ K; —K;s Ueo 2 K¢ 0 Uop | _
[ -K; K1+K4}{Uso} y[Ks K3}{U50} V{O KJ{US()}_O’ (60)

where 7 is the inverse decay length. This problem is obtained from the homogeneous form Eq. (6) using the
following solution form in it.

(o =er{ush @

Self-equilibrated stress states can be represented in terms of the eigendata of Eq. (60). It is noted that
flexural eigendata for a homogeneous, isotropic cylinder were first given by Klemm and Little (1970) from
an analytical solution of a boundary-value problem. Some examples of this representation based on finite
element formulations may be found in Kazic and Dong (1990) and Lin et al. (2001). Also, the inverse decay
length data can be obtained from Zhuang et al.’s (1999) formulation by setting their steady-steady fre-
quency o = 0. It is mentioned that the bases for this type of analysis are the strain energy decay inequality
theorems of Toupin (1965) and Knowles (1966).
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